skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Walker, Caitlin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Three natural exposures near Healy, Alaska (Dry Creek, Panguingue Creek, and Healy Spur) and transects of shallow cores from three hillslopes near Eight Mile Lake were analyzed for particle-size distribution, loss-on-ignition for organic matter content, and radiocarbon dating. This study is part of a Master’s thesis research project by Walker at Northern Arizona University (https://www.proquest.com/openview/80b94829f88d5c8e0d0d678581079273/1?pq-origsite=gscholar&cbl=18750&diss=y). It builds on work of Marshall et al. (2023; doi: 10.1029/2022JG007290) who reported data from additional sediment cores taken along one of the hillslopes in this study, namely Hillslope A (https://arcticdata.io/catalog/view/doi:10.18739/A2F76683D). The motivation was to compare datasets of eolian material between different depositional settings, as well as identify trends in eolian thickness and particle size across the Healy landscape to reconstruct Holocene eolian deposition and identify the factors influencing depositon. 
    more » « less
  2. Organic-rich surficial materials of the Arctic are a storehouse of frozen carbon (C) of global consequence. Climate ultimately controls the exchange of carbon between this reservoir and the atmosphere, but the long-term relation between climate and permafrost carbon is highly uncertain. This study draws from climate changes that occurred during the recent geologic past (late glacial and Holocene), which serve as natural experiments, to quantify the long-term (millennial-scale) relation between climate and the mass of carbon that accumulated under distinctly different climate states. Whereas previous studies of the effects of climate changes on permafrost carbon have generally focused on lakes and peatlands of low-lying terrain, this study provides complementary information from upland deposits that mantle hilly terrain, possibly the least-well known component of the arctic frozen organic carbon inventory. The project applies and develops new approaches to investigating the relation between climate and carbon sequestration in an understudied setting and at long time scales by bringing together expertise in Arctic paleoecology, paleoclimatology, surficial geology, geochronology and quantitative geomorphology. This paleo perspective provides a unique approach to help infer how permafrost and its C reservoir may react in the future. 
    more » « less